Nonholonomic Integrators
نویسنده
چکیده
We introduce a discretization of the Lagrange-d’Alembert principle for Lagrangian systems with nonholonomic constraints, which allows us to construct numerical integrators that approximate the continuous flow. We study the geometric invariance properties of the discrete flow which provide an explanation for the good performance of the proposed method. This is tested on two examples: a nonholonomic particle with a quadratic potential and a mobile robot with fixed orientation. Submitted to: Nonlinearity AMS classification scheme numbers: 37J60, 37M15 Nonholonomic Integrators 2
منابع مشابه
ar X iv : m at h - ph / 0 21 10 28 v 2 1 1 N ov 2 00 3 Geometric integrators and nonholonomic mechanics
A geometric derivation of nonholonomic integrators is developed. It is based in the classical technique of generating functions adapted to the special features of nonholonomic systems. The theoretical methodology and the integrators obtained are different from the obtained in [12]. In the case of mechanical systems with linear constraints a family of geometric integrators preserving the nonholo...
متن کاملEnergy Conserving Nonholonomic Integrators
We address the problem of constructing numerical integrators for nonholonomic Lagrangian systems that enjoy appropriate discrete versions of the geometric properties of the continuous flow, including the preservation of energy. Building on previous work on time-dependent discrete mechanics, our approach is based on a discrete version of the Lagrange-d’Alembert principle for nonautonomous systems.
متن کاملVariational Integrators for Hamiltonizable Nonholonomic Systems
We report on new applications of the Poincaré and Sundman timetransformations to the simulation of nonholonomic systems. These transformations are here applied to nonholonomic mechanical systems known to be Hamiltonizable (briefly, nonholonomic systems whose constrained mechanics are Hamiltonian after a suitable time reparameterization). We show how such an application permits the usage of vari...
متن کاملDiscrete Nonholonomic Lagrangian Systems on Lie Groupoids
This paper studies the construction of geometric integrators for nonholonomic systems. We derive the nonholonomic discrete Euler-Lagrange equations in a setting which permits to deduce geometric integrators for continuous nonholonomic systems (reduced or not). The formalism is given in terms of Lie groupoids, specifying a discrete Lagrangian and a constraint submanifold on it. Additionally, it ...
متن کاملIntegrators for Nonholonomic Mechanical Systems
We study a discrete analog of the Lagrange-d’Alembert principle of nonhonolomic mechanics and give conditions for it to define a map and to be reversible. In specific cases it can generate linearly implicit, semi-implicit, or implicit numerical integrators for nonholonomic systems which, in several examples, exhibit superior preservation of the dynamics. We also study discrete nonholonomic syst...
متن کامل